Joe Cheung & his Partners

只供 Joe Cheung & his partner 學員使用

Marking Scheme Compiled by Joe

りなれて

Joe Cheung & his Partners

只供 Joe Cheung & his partner 學員使用

Section A(1)

1.
$$\frac{(x^5y)^{-4}}{x^{14}y^{20}} = \frac{x^{-20}y^{-4}}{x^{14}y^{20}} = x^{-20-14}y^{-4-20} = x^{-34}y^{-24} = \frac{1}{x^{34}y^{24}}$$

$$1M + 1M + 1A$$

2. (a)
$$4x^2 + 28xy + 49y^2 = (2x + 7y)^2$$

(b)
$$4x^2 + 28xy + 49y^2 - 8x - 28y$$

= $(2x + 7y)^2 - 4(2x + 7y)$

$$=(2x+7y)(2x+7y-4)$$

3. (a) For
$$n = 6$$
,

$$\sin (5 \times 6)^{\circ} = \sin 30^{\circ} = 0.5$$

(b)
$$\frac{\sqrt{2}}{2}$$
, $\frac{\sqrt{3}}{2}$

4. (a)
$$3(h-4k) = 6h-5$$

$$3h - 12k = 6h - 5$$

$$-12k = 3h - 5$$

$$k=\frac{3h-5}{-12}$$

$$k = \frac{5-3h}{12}$$

(b)
$$k = \frac{5-3h}{12}$$

$$k' = \frac{5 - 3(h - 4)}{12} = \frac{5 - 3h + 12}{12} = \frac{5 - 3h}{12} + \frac{12}{12} = k + 1$$

$$\therefore$$
 k is increased by 1.

1A

us bartner

Joe Cheung & his Partners

只供 Joe Cheung & his partner 學員使用

5. (a)
$$-2x+3 < \frac{2x+5}{6}$$

$$-12x+18 < 2x+5$$

1M

$$-12x-2x<5-18$$

1M

$$-14x < -13$$

$$x > \frac{13}{14}$$

1A

1A

6. (a) Height of Susan 美玲的高度

$$=\frac{165}{(1+10\%)}$$

1M

$$=\frac{165}{1.1}$$

$$= 150 cm$$

1A

(b) Height of Amy 佩詩的高度

$$=150(1-10\%)$$

$$= 135 cm$$

1A

The required percentage 所求百分率

$$=\frac{165-135}{165}\times100\%$$

$$=18\frac{2}{11}\%$$
 (or 18.2%)

1A

Joe Cheung & his Partners

只供 Joe Cheung & his partner 學員使用

7. (a) L is the angle bisector of $\angle AOB$.

1A

L為ZAOB的角平分線。

(b) Let $M(r, \theta)$ be the polar coordinates of the point of intersection of L and AB.

設 L 與 AB 的交點的極坐標為 $M(r, \theta)$ 。

$$\angle AOB = 110^{\circ} - 50^{\circ} = 60^{\circ}$$

1A

$$\angle MOB = 30^{\circ}$$

$$\cos 30^{\circ} = \frac{r}{12}$$

1M

$$r = 6\sqrt{3}$$

1A

$$\theta = 50^{\circ} + 30^{\circ} = 80^{\circ}$$

1A

$$M(6\sqrt{3}.80^{\circ})$$

8. Let x and y be the number of matches that team F wins and draws respectively.

設球隊 F 勝出的場數與賽和的場數分別為 x 及 y。

$$\begin{cases} \frac{x}{y} = \frac{3}{1} & \dots (1) \\ 3x + y = 50 & \dots (2) \end{cases}$$

1A + 1A

From (1): x = 3y(3)

1A

$$y = 5$$

Put
$$y = 5$$
 into (3), $x = 3(5) = 15$

Put (3) into (2), 3(3y) + y = 50

1A

$$\therefore$$
 $x = 15, y = 5$

... Number of matches that team Floses 球隊 F 輸掉的場數

$$= 27 - 15 - 5 = 7$$

1M + 1A

Joe Cheung & his Partners

只供 Joe Cheung & his partner 學員使用

SECTION A(2)

9. (a) ∠*BDA* = ∠*BCE*

(Given)(已知)

BD = BC

(Given)(已知)

 $\angle ABD = \angle EBC = 90^{\circ}$

(Given)(已知)

 \therefore $\triangle ABD \cong \triangle EBC$

(ASA)

Case I: Any correct proof with correct reasons.

3M

Case II: Any correct proof without reasons.

2M

Case III: Incomplete proof with any one correct step and one correct reason.

1M

(b) (i) $\angle ADB = \angle CBD$

∴ BC // AD

(alt. ∠s, equal)(錯角相等)

 $\angle CBE = \angle BFA$

(alt. ∠s, BC // AD)(錯角,BC // AD)

 $\angle CEB = \angle BAF$

(corr. \angle s, \cong Δ s)(全等 Δ 對應角)

 $\angle BCE = 180^{\circ} - \angle CBE - \angle CEB$

(∠ sum of ∆)(∆內角和)

 $= 180^{\circ} - \angle BFA - \angle BAF$

(∠ sum of ∆)(∆內角和)

 $= \angle FBA$

∴ ∆CEB ~ ∆BAF

(AAA)

Case I: Any correct proof with correct reasons.

3M

Case II: Any correct proof without reasons.

2M

Case III: Incomplete proof with any one correct step and one correct reason.

1M

(ii) ∆DBF

1A

2018-YAE-MATH-Ans 1 - 5 For Internal Use Only

Joe Cheung & his Partners

只供Joe Cheung & his partner 學員使用

10. (a)
$$f(x) = (x+m)(x+n)(x-1)+5$$

$$f(0) = (0+m)(0+n)(0-1)+5$$

$$0 = -mn + 5$$

$$mn = 5$$

$$m = -5, n = -1$$

(b)
$$f(x) = (x-5)(x-1)(x-1) + 5 = x^3 - 7x^2 + 11x$$

$$f(x) - g(x) = x^3 - 7x^2 + 11x - (x^3 - 9x^2 + 10x + k) = 2x^2 + x - k$$

$$f(x)-g(x)=0$$

$$2x^2 + x - k = 0$$

$$\Delta \ge 0$$

$$(1)^2 - 4(2)(-k) \ge 0$$

$$1 + 8k \ge 0$$

$$k \ge -\frac{1}{2}$$

2018-YAE-MATH-Ans 1 - 6

Joe Cheung & his Partners

只供 Joe Cheung & his partner 學員使用

11. (a) Maximum absolute error 最大絕對誤差= 5 mL

1A

(b) Upper limit 上限 = 800 + 5 = 805 mL

Lower limit 下限 = 800 - 5 = 795 mL

1M

 \therefore 795 \le x < 805

1A

(c) (i) Upper limit of 48 packs of orange juice

48 包橙汁的總體積上限

 $= 805 \times 48$

1M

 $= 38640 \, mL$

= 38.640 L

1M

- < 38.7 L
- ... It is impossible 不可能

1A

- (ii) Lower limit of a glass of orange juice
 - 一杯橙汁的下限
 - = 250 2.5
 - $= 247.5 \, mL$

Number of glass of orange juice

橙汁的杯數

$$=\frac{38640}{247.5}$$

1M

≈ 156.12

< 157

... It is impossible 不可能

1A

Joe Cheung & his Partners

1M

只供 Joe Cheung & his partner 學員使用

12. (a) (i) Outer total surface area 外側的總表面面積

$$= 20 \times 40 \times 2 + 20 \times 30 \times 2 + 40 \times 30$$

$$=4000\,\mathrm{cm}^3$$

(ii) Capacity 容量

$$=20\times40\times30$$

$$= 24000 \, \text{cm}^3$$

(b)
$$\tan \theta = \frac{20}{40} = \frac{1}{2}$$

$$\theta = 26.6^{\circ}$$

Dartner

Joe Cheung & his Partners

只供 Joe Cheung & his partner 學員使用

SECTION B

13. $y = ax^2 - 3x + 9$

$$\alpha + \beta = -\frac{-3}{a} = \frac{3}{a}$$
(1)

$$\alpha\beta = \frac{9}{a} \qquad \dots (2)$$

$$AO = 2BO$$

$$-\alpha = 2\beta$$

$$\alpha = -2\beta$$

Put $\alpha = -2\beta$ into (1),

$$-2\beta+\beta=\frac{3}{a}$$

$$-\beta = \frac{3}{a}$$

$$\beta = -\frac{3}{a}$$

 $\therefore \quad \alpha = -2\beta = -2(-\frac{3}{a}) = \frac{6}{a}$

Put
$$\beta = -\frac{3}{a}$$
 and $\alpha = \frac{6}{a}$ into (2),

$$(\frac{6}{a})(-\frac{3}{a})=\frac{9}{a}$$

$$a = -2$$

$$\therefore \quad a = -2, \quad \alpha = \frac{6}{-2} = -3, \quad \beta = \frac{3}{2}$$

1M

1M

1M

1M

1A

5 Dartner

Joe Cheung & his Partners

只供 Joe Cheung & his partner 學員使用

14. (a) For Y: When N = 2.5,

$$2.5 = log_{100} \frac{E}{10}$$

1M

$$100^{2.5} = \frac{E}{10}$$

$$10^5 = \frac{E}{10}$$

$$10^6 = E$$

For *X*: When
$$E = 10^6$$
, $M = 8$

$$8 = \log 10^6 + k$$

1M

$$8 = 6 + k$$

$$k = 2$$

1A

(b) For X: When
$$M = a$$

$$a = \log E + 2$$

$$a-2 = \log E$$

For Y: When
$$E = 10^{a-2}$$
,

 $E = 10^{a-2}$

$$N = \log_{100} \frac{10^{a-2}}{10}$$

1M

$$N = \log_{100} 10^{a-3}$$

$$N = (a-3)\log_{100} 10$$

1M

$$N = (a-3)(\frac{1}{2})$$

$$N = \frac{a-3}{2}$$

1A

Joe Cheung & his Partners

只供 Joe Cheung & his partner 學員使用

15. (a)
$$y = -5x^2 + 24x$$

$$y = -5(x^2 - \frac{24}{5}x)$$

$$y = -5[x^2 - \frac{24}{5}x + (\frac{12}{5})^2 - (\frac{12}{5})^2]$$

$$y = -5[(x - \frac{12}{5})^2 - \frac{144}{25}]$$

$$y = -5(x - \frac{12}{5})^2 + \frac{144}{5}$$

$$y = -5[x^{2} - \frac{24}{5}x + (\frac{12}{5})^{2} - (\frac{12}{5})^{2}]$$

$$y = -5[(x - \frac{12}{5})^{2} - \frac{144}{25}]$$

$$y = -5(x - \frac{12}{5})^{2} + \frac{144}{5}$$

$$\therefore \text{ Vertex } \Im[\mathbb{E} = (\frac{12}{5}, \frac{144}{5})]$$

$$ABC \sim \Delta RQC \text{ (AAA)}$$

$$\frac{RC}{AC} = \frac{RQ}{AB}$$

$$RC = x$$

(b) (i)
$$\triangle ABC \sim \triangle RQC$$
 (AAA)

$$\frac{RC}{AC} = \frac{RQ}{AB}$$

$$\frac{RC}{8} = \frac{x}{6}$$

$$RC = \frac{4x}{3}$$

$$\triangle ABC \sim \triangle SBP (AAA)$$

$$\frac{BS}{BA} = \frac{SP}{AC}$$

$$\frac{BS}{6} = \frac{x}{8}$$

$$BS = \frac{3x}{4}$$

$$\therefore SR = 10 - \frac{3x}{4} - \frac{4x}{3} = 10 - \frac{25x}{12}$$

$$Y = x(10 - \frac{25x}{12}) = 10x - \frac{25x^2}{12}$$

2018-YAE-MATH-Ans 1 - 11

Joe Cheung & his Partners

只供Joe Cheung & his partner 學員使用

(ii)
$$Y = 10x - \frac{25x^2}{12}$$

$$Y = \frac{5}{12}(-5x^2 + 24x)$$

$$Y = \frac{5}{12} \left[-5(x - \frac{12}{5})^2 + \frac{144}{5} \right]$$
 From (a)

$$Y = -\frac{25}{12}(x - \frac{12}{5})^2 + 12$$

 \therefore The maximum value of the area is 12 cm².

面積的極大值為 12 cm²。

∴ No 不能。 1A

Joe Cheung & his Partners

只供 Joe Cheung & his partner 學員使用

1. A

$$(-7)^{300} \cdot \frac{1}{7^{100}} = (7)^{300} \cdot \frac{1}{7^{100}} = 7^{300-100} = 7^{200}$$

2. B

$$4 - x^{2} + 4xy - 4y^{2} = 4 - (x^{2} - 4xy + 4y^{2}) = 2^{2} - (x - 2y)^{2} = (2 + x - 2y)(2 - x + 2y)$$

3. C

$$\frac{27 \times 30 + 22 \times 20}{50} = 25 \text{ page } \overline{1}/\text{min}$$

4. B

Cost 成本 =
$$\frac{700}{1+40\%}$$
 = \$500

5. A

$$p = -5$$
, $q = -1$, $r = 2$.

$$\frac{p-q}{r} = \frac{-5-(-1)}{2} = -2$$

6. D

$$hx(x+2) + x^2 \equiv 3kx(x+1) + 4x$$

Put
$$x = -1$$
,

$$h(-1)(-1+2) + (-1)^2 = 3k(-1)(-1+1) + 4(-1)$$

$$h(-1)(1) + 1 = 0 - 4$$

$$-h + 1 = -4$$

$$h = 5$$

2018-YAE-MATH-Ans 1 - 13

Joe Cheung & his Partners

只供 Joe Cheung & his partner 學員使用

7. B

$$AB = \sqrt{(-2-1)^2 + (0-5)^2} = \sqrt{34}$$

For Choice A:
$$AC = \sqrt{(-2-1)^2 + (5-5)^2} = 3$$

For Choice B:
$$AC = \sqrt{(4-1)^2 + (0-5)^2} = \sqrt{34}$$

For Choice C:
$$AC = \sqrt{(0-1)^2 + (-4-5)^2} = \sqrt{82}$$

For Choice D:
$$AC = \sqrt{(4-1)^2 + (1-5)^2} = 5$$

8. D

$$h + k = 2(360^{\circ}) - 70^{\circ} = 650^{\circ}$$

9. B

Let x and y be the number of pens and rubbers bought respectively.

設x及y分別為購買了的原子筆及橡皮擦數量。

$$\begin{cases} 4.5x + 2.8y = 92.7 \dots (1) \\ x = 2y - 3 \dots (2) \end{cases}$$

Sub. (2) into (1),

$$4.5(2y-3) + 2.8y = 92.7$$

$$9y - 13.5 + 2.8y = 92.7$$

$$11.8y = 106.2$$

$$y = 9$$

Put
$$y = 9$$
 into (2), $x = 2(9) - 3 = 15$

:. The total number of pens and rubbers bought

購買了的原子筆及橡皮擦的總數

$$= 9 + 15 = 24$$

2018-YAE-MATH-Ans 1 - 14 For Internal Use Only

ALTNOL

Joe Cheung & his Partners

只供 Joe Cheung & his partner 學員使用

10. B

: The graph opens downwards.

$$\therefore a < 0$$

The roots of the graphs are -3 and 8.

圖像的根為-3及8。

II.
$$y = -\frac{1}{2}x^2 + \frac{5}{2}x + 12 = -\frac{1}{2}(x^2 - 5x - 24) = -\frac{1}{2}(x+3)(x-8)$$

III.
$$y = -15x - (72 - 3x^2) = -15x - 72 + 3x^2 = 3x^2 - 15x - 72$$

11. B

$$f(x) = 2x^2 + kx - 1$$

$$f(2) = f\left(\frac{1}{2}\right)$$

$$2(2)^{2} + k(2) - 1 = 2\left(\frac{1}{2}\right)^{2} + k\left(\frac{1}{2}\right) - 1$$

$$8 + 2k - 1 = \frac{1}{2} + \frac{1}{2}k - 1$$

$$k = -5$$

12. D

 \therefore It has a maximum point at (3, 6).

$$\therefore$$
 a < 0, h = 3 and k = 6.

$$\therefore$$
 The function is $f(x) = a(x-3)^2 + 6$ and a is negative.

函數為
$$f(x) = a(x-3)^2 + 6$$
及 a 為負數。

Joe Cheung & his Partners

只供 Joe Cheung & his partner 學員使用

13. C

Let x = -2 and y = -1

I.
$$\frac{2}{3x} = \frac{2}{3(-2)} = -\frac{1}{3}$$
$$\frac{2}{3y} = \frac{2}{3(-1)} = -\frac{2}{3}$$
$$2 \qquad 2$$

$$\therefore \quad \frac{2}{3x} < \frac{2}{3y}$$

II.
$$6-2x=6-2(-2)=10$$

$$6 - 2y = 6 - 2(-1) = 8$$

$$\therefore 6-2x>6-2y$$

III.
$$-xy = -(-2)(-1) = -2$$

 $-y^2 = -(-1)^2 = -1$

$$-xy < -y^2$$

partners

14. C

The 1st pattern: number of dots 第 1 個圖案的點子數量 = $1^2 + 0 = 1$

The 2nd pattern: number of dots 第 2 個圖案的點子數量= $2^2 + 1 = 5$

The 3rd pattern: number of dots 第 3 個圖案的點子數量= $3^2 + 2 = 11$

The 4th pattern: number of dots 第 4 個圖案的點子數量= $4^2 + 3 = 19$

•

The 7th pattern: number of dots 第 7 個圖案的點子數量 = $7^2 + 6 = 55$

15. A

$$\frac{\sin(90^{\circ} - \theta)\tan(360^{\circ} - \theta)}{\cos(180^{\circ} + \theta)} = \frac{\cos\theta(-\tan\theta)}{-\cos\theta} = \tan\theta$$

2018-YAE-MATH-Ans 1 - 16

Joe Cheung & his Partners

只供 Joe Cheung & his partner 學員使用

16. D

$$\angle ACB = \angle ADC = \theta$$

$$AC = CD\sin\theta = x\sin\theta$$

$$BC = AC\cos\theta = x\sin\theta\cos\theta$$

17. B

The exterior angle of the polygon 該多邊形的一外角= $\frac{360^{\circ}}{n}$

The interior angle of the polygon 該多邊形的一內角= $\frac{360^{\circ}}{n}$ +90°

$$\frac{360^{\circ}}{n} + \frac{360^{\circ}}{n} + 90^{\circ} = 180^{\circ}$$

$$n = 8$$

I. The value of n is 8.

n的值為8。

II. The interior angle of the polygon =
$$\frac{360^{\circ}}{8} + 90^{\circ} = 135^{\circ}$$

III. The number of axes of reflectional symmetry of the polygon is 8.

該多邊形的反射對稱軸的數目為8。

18. C

Volume 體積

$$=(8\times12-6\times8)\times10$$

$$= 480 \, \text{cm}^3$$

6

Joe Cheung & his Partners

只供 Joe Cheung & his partner 學員使用

19. D

Let r_A , r_B and r_C be the radius of A, B and C respectively.

設 $r_A imes r_B$ 及 r_C 分別為A imes B 及C的半徑。

Let A_A , A_B and A_C be the curved surface area of A, B and C respectively.

設 $A_A \cdot A_B$ 及 A_C 分別為 $A \cdot B$ 及C的曲面面積。

Let V_A , V_B and V_C be the volume of A, B and C respectively.

設 $V_A \times V_B$ 及 V_C 分別為 $A \times B$ 及C的體積。

$$\left(\frac{r_A}{r_B}\right)^3 = \frac{V_A}{V_B}$$

$$\left(\frac{r_B}{r_C}\right)^2 = \frac{A_B}{A_C}$$

$$\left(\frac{r_A}{r_R}\right)^3 = \frac{64}{27} \qquad ,$$

$$\left(\frac{r_B}{r_C}\right)^2 = \frac{16}{25}$$

$$\frac{r_A}{r_B} = \frac{4}{3}$$

$$\frac{r_B}{r_C} = \frac{4}{5}$$

$$\therefore$$
 $r_A: r_B: r_C = 16: 12: 15$

$$\therefore$$
 $r_A: r_C = 16:15$

20. D

Let AD = x cm, then $DE = x\cos 30^{\circ}$.

$$\frac{1}{2}(x)(x\cos 30^{\circ})\sin 30^{\circ} = 3$$

$$\frac{\sqrt{3}}{8}x^2 = 3$$

$$x^2 = 8\sqrt{3}$$

$$\angle CAD = 60^{\circ}$$

$$CD = AD \tan 60^{\circ} = \sqrt{3}x \text{ cm}$$

:. Area =
$$AD \times CD = x \times \sqrt{3}x = \sqrt{3}x^2 = \sqrt{3}(8\sqrt{3}) = 24 \text{ cm}^2$$

Joe Cheung & his Partners

只供 Joe Cheung & his partner 學員使用

21. C

$$\therefore$$
 $\triangle DEF \sim \triangle BAF (AAA)$

$$\therefore \frac{\text{Area of } \Delta DEF}{\text{Area of } \Delta BAF} = \left(\frac{DE}{BA}\right)^2$$

$$\frac{25}{\text{Area of } \Delta BAF} = \left(\frac{2.5}{3}\right)^2$$

Area of $\Delta BAF = 36 \,\mathrm{cm}^2$

 \therefore $\triangle DEF$ and $\triangle DFA$ have the same height.

 ΔDEF 及 ΔDFA 有相同的高。

$$\therefore \frac{\text{Area of } \Delta DEF}{\text{Area of } \Delta DFA} = \frac{EF}{FA}$$

$$\frac{25}{\text{Area of } \Delta DFA} = \frac{2.5}{3}$$

Area of $\Delta DFA = 30 \text{ cm}^2$

 ΔDAE 及 ΔDBE 有相同的高和底。

$$\therefore$$
 Area of $\triangle DBE = \text{Area of } \triangle DAE$

$$= 25 + 30$$

$$= 55 \text{ cm}^2$$

 \therefore $\triangle CBE$ and $\triangle DBE$ have the same height and base.

 ΔCBE 及 ΔDBE 有相同的高和底。

$$\therefore \text{ Area of } \Delta CBE = \text{Area of } \Delta DBE$$

$$= 55 \text{ cm}^2$$

$$\therefore$$
 Area of $\triangle BCD$ = Area of $\triangle CBE$ + Area of $\triangle DBE$ + Area of $\triangle DFA$ + Area of $\triangle BAF$

$$=55+55+30+36$$

$$= 176 \text{ cm}^2$$

2018-YAE-MATH-Ans 1 - 19

Joe Cheung & his Partners

只供 Joe Cheung & his partner 學員使用

22. D

The new rectangular coordinates of $P = (-2, -2\sqrt{3})$

P 的新直角坐標=
$$(-2, -2\sqrt{3})$$

Let the polar coordinates of new $P = (r, \theta)$

設
$$P$$
的新極坐標= (r, θ)

$$r = \sqrt{(-2)^2 + (-2\sqrt{3})^2} = 4$$

$$\tan\theta = \frac{-2\sqrt{3}}{-2}$$

$$\theta = 60^{\circ}$$
(rejected)

$$\theta = 240^{\circ}$$

$$P = (4, 240^{\circ})$$

23. B

$$-\frac{1}{-3} \times -\frac{k}{-3} = -1$$

$$\frac{k}{9} = -1$$

$$k = -9$$

Dartner

Joe Cheung & his Partners

只供 Joe Cheung & his partner 學員使用

24. D

Slope
$$\Re = -\frac{1}{a}$$

: Slope is positive.

$$\therefore -\frac{1}{a} > 0$$

x-intercept =
$$-\frac{b}{1} = -b$$

 \therefore x-intercept is positive.

$$\therefore -b > 0$$

25. C

$$\left(\frac{1}{4000}\right)^2 = \frac{25}{\text{the actual area } g \ \text{M} = 3}$$

the actual area 實際面積 = $400000000 \, \text{cm}^2 = 40000 \, \text{m}^2$

26. A

Let
$$x = 3k$$
, $y = 2k$, $z = 5k$

$$(3x - y - z) : (2x + 3y - 2z)$$

$$= [3(3k) - (2k) - (5k)] : [2(3k) + 3(2k) - 2(5k)]$$

= 2k : 2k

= 1 : 1

2018-YAE-MATH-Ans 1 - 21

Joe Cheung & his Partners

只供 Joe Cheung & his partner 學員使用

27. B

$$z = \frac{k\sqrt{y}}{x^2}$$

$$y = \left(\frac{x^2 z}{k}\right)^2 = \frac{x^4 z^2}{k^2}$$

$$\text{New } y' = \frac{(0.8x)^4 (1.875z)^2}{k^2} = \frac{1.44x^4 z^2}{k^2} = 1.44y$$

Percentage change 百分變化

$$= \frac{1.44y - y}{y} \times 100\% = 44\%$$

28. C

The least possible value of n

n的最少可能值

$$=\frac{(50-0.5)\times1000}{(60+0.5)}$$

≈ 818.182

≈ 818

is partners

Dartner

Joe Cheung & his Partners

只供 Joe Cheung & his partner 學員使用

29. B

By triangular inequality

$$\begin{cases} x + 2x > x + 3 \\ 2x + x + 3 > x \\ x + x + 3 > 2x \end{cases}$$

$$= \begin{cases} x > \frac{3}{2} \\ x > -\frac{3}{2} \\ \text{all real values of } x \\ \text{所有實數} x \end{cases}$$

$$\therefore x > \frac{3}{2}$$

∴ The minimum value of
$$x = 2$$
.

 x 的最少值= 2 ∘

30. A

$$\therefore$$
 $x = 7$

$$\therefore$$
 $y = 6$

Mean 平均值=
$$\frac{2+3+3+6+7}{5}$$
= 4.2

Joe Cheung & his Partners

只供Joe Cheung & his partner 學員使用

31. A

$$\frac{1}{m-2} - \frac{1}{2+m} = \frac{1}{m-2} - \frac{1}{m+2} = \frac{m+2-(m-2)}{m^2-4} = \frac{4}{m^2-4}$$

32. C

$$(2i)^{100} + (-2i)^{100} = 2^{100}i^{100} + (-2)^{100}i^{100} = 2^{100}(1) + (2)^{100}(1) = 2 \times (2)^{100} = 2^{101}$$

33. A

$$\alpha^2 - 3\alpha + 1 = 0$$

$$2\alpha^2 - 6\alpha + 2 = 0$$

$$2\alpha^2 - 6\alpha - 1 + 2 = -1$$

$$2\alpha^2 - 6\alpha - 1 = -1 - 2$$

$$2\alpha^2 - 6\alpha - 1 = -3$$

34. A

$$f(x) = -2x^2 + 12x + k$$

$$\frac{4(-2)(k) - (12)^2}{4(-2)} = 7$$

$$-8k - 144 = -56$$

$$-8k = 88$$

$$k = -11$$

35. D

Darthe

Joe Cheung & his Partners

只供 Joe Cheung & his partner 學員使用

36. D

For A:
$$\log 111^{444} = 444 \log 111 = 908.123$$

For B:
$$\log 222^{333} = 333 \log 222 = 781.336$$

For C:
$$\log 333^{222} = 222 \log 333 = 559.983$$

For D:
$$\log 444^{111} = 111 \log 444 = 293.860$$

$$\therefore$$
 444¹¹¹ is the least.

37. D

Let
$$a = k \log 3$$
 and $b = k \log 2$,

$$(a+b):(a+3b)$$

$$= (k \log 3 + k \log 2) : (k \log 3 + 3k \log 2)$$

$$= [k(\log 3 + \log 2)] : [k(\log 3 + \log 2^3)]$$

$$= (k \log 6) : (k \log 24)$$

$$= \log 6 : \log 24$$

38. C

Joe Cheung & his Partners

只供Joe Cheung & his partner 學員使用

39. A

Put x = 0 into $y = ab^x$,

$$ab^{(0)} > 1$$

 \therefore The value of y increases as x increases.

當
$$x$$
增加, y 的值增加。

 $\therefore b > 0$

$$y = ab^x$$

$$\log_3 y = \log_3 ab^x$$

$$\log_3 y = \log_3 a + x \log_3 b$$

By comparing with y = mx + c,

與
$$y = mx + c$$
比較,

$$m = \log_3 b$$
 $c = \log_3 a$

$$m > 0$$
 $c > 0$

:. A is the correct answer.

40. D

$$m^2 - 2m + 1 = (m-1)^2$$

$$m^2 - 1 = (m+1)(m-1)$$

$$m^3 - 1 = (m - 1)(m^2 + m + 1)$$

L.C.M. =
$$(m-1)^2(m+1)(m^2+m+1)$$

& his partner

Joe Cheung & his Partners

只供 Joe Cheung & his partner 學員使用

41. A

110010000100012

$$= 2^{13} + 2^{12} + 2^9 + 2^4 + 2^0$$

$$=2^{13}+2^9+2^{12}+2^4+2^0$$

$$=2^{13}+2^9+4096+16+1$$

$$=2^{13}+2^9+4113$$

42. B

$$\begin{cases} y = 2\sin^2 x & \dots (1) \\ y = -3\cos x & \dots (2) \end{cases}$$

Put (1) into (2),

$$2\sin^2 x = -3\cos x$$

$$2(1-\cos^2 x) + 3\cos x = 0$$

$$2 - 2\cos^2 x + 3\cos x = 0$$

$$2\cos^2 x - 3\cos x - 2 = 0$$

$$(\cos x - 2)(2\cos x + 1) = 0$$

$$\cos x = -\frac{1}{2}$$

or

 $\cos = 2$ (rejected)

$$x = 120^{\circ}$$
 or 240°

フロイトロウィ

:. There are two points of intersections.

有兩個相交點。

Joe Cheung & his Partners

只供 Joe Cheung & his partner 學員使用

43. C

Put (0, 2) into
$$y = k \cos(\frac{1}{2}x + \theta) + 2$$
,

$$2 = k \cos\left(\frac{1}{2}(0) + \theta\right) + 2$$

$$2 = k \cos \theta + 2$$

$$0 = k \cos \theta$$

$$0 = \cos \theta$$

$$\theta = 90^{\circ}$$
 or $\theta = 270^{\circ} = -90^{\circ}$

Put (180°, 5) and
$$\theta = 90^{\circ}$$
 into $y = k \cos(\frac{1}{2}x + \theta) + 2$,

$$5 = k \cos \left(\frac{1}{2}(180^{\circ}) + 90^{\circ}\right) + 2$$

$$5 = k\cos(180^\circ) + 2$$

$$5 = -k + 2$$

$$k = -3$$

Put (180°, 5) and
$$\theta = -90^{\circ}$$
 into $y = k \cos(\frac{1}{2}x + \theta) + 2$,

$$5 = k \cos \left(\frac{1}{2} (180^{\circ}) - 90^{\circ}\right) + 2$$

$$5 = k\cos(0^\circ) + 2$$

$$5 = k + 2$$

$$k = 3$$

Joe Cheung & his Partners

只供 Joe Cheung & his partner 學員使用

44. A

Slope of ax + by = 0:

$$m = \frac{-a}{b}$$

$$\therefore a > 0$$

- :. The graph of $y = ax^2 + bx$ opens upwards. $y = ax^2 + bx$ 的圖像開口向上。
- :. A is the correct answer.

45. B

Note that $\triangle OAB$ is a right-angled triangle.

留意ΔOAB 為一直角三角形。

 \therefore The circumcentre of $\triangle OAB$ is the mid-point of AB, i.e., (3, 4), let's denote the point by M.

$$\Delta OAB$$
 的外心為 AB 的中點,即(3,4),將該點標記為 M 。

The orthocentre of $\triangle OAB$ is O.

$$\Delta OAB$$
 的垂心為 O 。

Note that *OM* is a median of $\triangle OAB$.

留意 OM 為 ΔOAB 的中線。

 \therefore The centroid, circumcentre and orthocentre of $\triangle OAB$ lie on the same straight line, OM.

$$\Delta OAB$$
 的形心、外心及垂心位於同一直線 OM 上。